存贮论
[拼音]:cunzhulun
[外文]:inventory theory
研究最优存储策略的理论和方法,又称库存论。它是运筹学最早获得成功应用的领域之一。存储是系统随机聚散现象,在许多情况下可直接用排队论的理论与方法求解,但存贮论更侧重于研究存储策略。存储的作用在于缓冲调节供求之间的不平衡,以避免由需求大于供应而造成的损失;但存储也有损失,需要支付存储费用。研究最优存储策略,有利于保持合适的库存水平。
发展概况
1915年美国经济学家哈里斯对商业中的库存问题建立了一个简单模型,并求得了最优解,但未被人们注意。1918年威尔逊建立确定性库存模型,并重新得出了哈里斯的公式,被称为威尔逊公式。二次大战后开始研究随机性库存模型。50年代美国的经济学家们研究了最优存储策略,建立了存储问题的数学模型和基本存储泛函方程,证明了解的存在性和唯一性,并探讨了某些特殊的存储过程。1952年美国数学家又研究了存储问题的概率统计性质,确定了需求分布律,进一步发展了存储理论。现在库存论已转向研究多种商品、多个库存点的理论,研究方向是利用信息来控制存储的基本理论。库存论的应用研究侧重在水库的调节、血库的储控和生产的控制等方面。
库存问题要素
库存问题的基本要素是:
(1)需求。这是库存系统的输出。需求量可通过市场销售额等经处理后得到。它可以是随机变量,也可以是常量。
(2)补充供应。它是库存系统的输入,可通过订货或生产等方式解决,主要参数是补充的时间、数量和从订货到进货的滞后时间。滞后时间也可以是随机变量或常量。
(3)存储策略。指给出补充时间和补充数量的一个方案。为了知道库存量,可进行连续性或周期性检查。常用的存储策略是(s,S)型策略,这里s是订货点,S是库存水平。在连续性检查的系统中,库存量达到s就立即订货或生产,订货量Q=S–s。在周期性检查的系统中,在某一检查时刻kt,库存水平I(kt)<s,则立即订货,订货量Q=S–I(kt)。
(4)费用。包括进货、保管、缺货损失引起的费用。进货费C(z)= K+cz,式中K为每进一次货所需的固定费用(如手续费、最低起运费或生产准备费等),z为进货量,c为单位价格。保管费包括库存费用、保险费、税金、损耗等。缺货费用来衡量因缺货而造成的损失,包括营业额的损失、信誉损失等。
(5)目标函数。通常取平均费用函数或平均利润函数作为目标函数。
确定性库存模型
在库存论中建立库存模型要区分各种不同情况,如连续性检查还是周期性检查,是否允许缺货,交货能力或生产能力等。研究得最多的是连续性检查时的确定性库存模型。它的表达形式是
式中min表示求极小值,s.t.表示约束条件,F(s, Q)为目标函数,s为订货点,Q为订货量。在允许缺货的情况下,若取费用函数作为目标函数式中D为需求率,即单位时间的需求量;h为单件保管费;K为每次进货的固定费用;c为货物的单价;则可求得最优解s*=0,。此时平均费用最小,即
是经济订货量公式,称为威尔逊公式或最优批量公式。
随机性库存模型
一般是指需求量为随机变量的模型。研究得最多的是单阶段随机需求模型,此时库存周期(称为阶段)是时间的最小单位,仅在每一阶段开始作一次决策,决定进货量。设初始库存水平为u,进货量与原有库存量之和为y,L(・)为保管费期望值与缺货损失费期望值之和,K为每次进货的固定费用,c为货物单价,则总费用函数即目标函数
设y=s是目标函数取极小值的点,则。由此推得, S 是使成立的最小正整数,s则可从下式求出:L(s)+cs≤K+cS+L(S)。对于离散分布随机变量,可查表求得。
在一般情况下需求量是一个随机变量,服从一定的概率分布。库存水平决定于订货和供货方式。若订货仅在有限个时刻提出,约定即时交货,则最优存储策略的研究归结为确定一系列订货量,使得在满足具有一定概率分布的需求时总损失费用的期望值最小,也可提出使损失费用超过某一给定值的概率最小。一般说,最优库存水平决定于订货策略。它与起始库存量、交货时滞、交货和订货方式、有无固定费用、订货次数,以及费用与库存量是否成比例等因素有关。可以根据不同的情况,提出各种类型的最优存储策略。
建筑资质代办咨询热线:13198516101
标签:存贮论
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:《存贮论》
文章链接:https://www.scworui.com/13387.html
该作品系作者结合建筑标准规范、政府官网及互联网相关知识整合。如若侵权请通过投诉通道提交信息,我们将按照规定及时处理。