拉普拉斯变换
[拼音]:Lapulasi bianhuan
[外文]:Laplace transformation
为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。
用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+jω的一个函数,其中σ和ω 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定:
。
如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的�樟蚕凳�。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。
函数变换对和运算变换性质
利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。
拉普拉斯反变换
拉普拉斯变换具有可逆性。由复数表达式F(s)来定出实数表达式f(t)的运算称为反变换。拉普拉斯反变换的定义积分式是
。
直接计算这个积分是困难的。但是对于大多数工程问题,F(s)往往是s的一个严格真有理分式
可采用简单步骤来完成反变换运算。对应于F(s)的分母多项式为零的根是两两不相等的情况,在定出它们的值λ1、λ2、…、λn以后,由部分分式展开并结合查表1,可定出反变换函数为
式中。如果F(s)的分母多项式为零的根中包含有重根,那么反变换的结果和计算过程都要复杂一些。
应用
从数学的观点来说,拉普拉斯变换主要为求解线性微分方程提供了一种简便的运算方法。在给定微分方程后,运用表1的变换关系和表2的运算性质,就可把问题化成为求解象函数的代数方程,它的解经反变换后的结果就是微分方程的解。
- 参考书目
-
- 钟士模、郑大钟著:《过渡过程分析》,清华大学出版社,北京,1986。
建筑资质代办咨询热线:13198516101
标签:拉普拉斯变换
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:《拉普拉斯变换》
文章链接:http://www.scworui.com/13199.html
该作品系作者结合建筑标准规范、政府官网及互联网相关知识整合。如若侵权请通过投诉通道提交信息,我们将按照规定及时处理。